
in: Proceedings of GROUP ’99, ACM-Press, New York, pp. 50 – 60

“Let's see your Search-Tool!” –
On the Collaborative use of Tailored Artifacts

Volker Wulf
ProSEC - Department of Computer Science, University of Bonn,

Römerstr. 164, 53117 Bonn,
Germany

volker@cs.uni-bonn.de

ABSTRACT
Groupware applications should be tailorable on different
levels of complexity to encourage individual learning and
collaborative tailoring activities. A search tool has been
developed which offers different levels of tailoring
complexity by means of hierarchically organized
component languages. Users could create alternative
search tools and compound components by themselves.
Search tool alternatives and compound components
could also be shared among the users. When introducing
this tool into an organization of the political
administration, it turned out that the users had
considerable problems in understanding the functioning
of artifacts created by someone else. To ease cooperative
tailoring activities, we have implemented features, which
allow users to structure, describe, and explore shared
components and search tool alternatives. Also we
provided means to store and exchange examples for
components’ use.

Keywords: tailorability, exploration, groupware,
component architecture

INTRODUCTION
Tailorability is widely assumed to be a key design
requirement for groupware. It allows adapting tailorable
aspects of an application during usage to different tasks,
personal preferences and group standards. Tailoring can
be distinguished from ordinary usage and system
development (cf. Henderson and Kyng 1991; Oberquelle
1994; Bentley and Dourish 1995).

Tailoring is carried out by users in their work
environment. As the level of tailoring expertise varies
among different users, these activities are often carried
out cooperatively. Local experts play a crucial role in this
cooperation. Being domain experts outside the MIS
department, they support other users in adapting their
systems to their needs (cf. Mackay 1990, Gantt and Nardi
1992, Nardi 1993, Trigg and Bødker 1994).

As most users of groupware do not have programming
skills, the potentials of tailorable application have to be
made accessible to this user group. Research on
tailorable groupware applications has not yet focused
much on end users without programming skills and their
cooperation with more skilled users. In the CSCW
community much effort has been devoted to the

implementation of tailorable architectures and
applications (e.g.: Kahler et al. 1999, Bentley and
Wasserschaff 1996, Syri 1997, Dourish 1996, Malone et al.
1992). Some of this work provides tailorability only at the
level of application programmers. But even those
applications, which provide a tailoring interface to end
users, have rarely been evaluated in real work
environments. Such evaluations are critical, because they
show whether users are able to handle the tailoring
functionality. Also, the CSCW community has not yet
focused on technical support for cooperative tailoring
activities. Tailoring is either perceived as an individual
activity or it is assumed that cooperation does not need
technical support.

By contrary, empirical research on the usage of tailorable
single user application tackled some of these issues.
According to these findings, applications should be
tailorable on different levels of complexity. Such a design
turned out being beneficial in dealing with different levels
of tailoring expertise among the users, encouraging
individual learning and stimulating cooperative tailoring
activities (cf. MacLean et al. 1990; Nardi and Miller 1991,
Nardi 1993). Moreover, MacLean et al. (1990)
implemented rudimentary technical support for
collaborative tailoring. Users can send and receive
tailored artifacts (buttons representing certain functions)
via e-mail.

In this paper, we will present a search tool environment,
which supports cooperative tailoring activities by means
of tailoring languages of different levels of complexity.
Also it supports the sharing of tailored artifacts among
users. To evaluate this tailoring environment, it was
introduced into an organization of the political
administration. It turned out that users had considerable
problems to understand the functioning of tailored
artifacts created by others. Therefore, the tailoring
environment was extended by features, which support
users in structuring, describing, and exploring shared
components and search tool alternatives. Also we
provided means to store and exchange examples for
components’ use.

Layered Tailoring Environments
Tailorable applications provide tailoring environments. In
these environments users create persistent artifacts
which determine the tailorable aspects of the application.
These artifacts are built by means of tailoring languages.

Tailoring languages can be of different levels of
complexity. Henderson and Kyng (1991, pp. 226)
distinguish three levels of complexity:

- choosing between alternatives of anticipated behavior,

- constructing new behavior from existing pieces,

- altering the artifact (i.e. reprogramming).

Tailoring languages need to be represented at the user
interface.1 Beyond the languages, tailoring environments
may contain additional features, which allow testing,
administrating or sharing of tailored artifacts. As users
tend to adapt their applications rather infrequently and
irregularly (cf. Mackay 1990), these environments should
also support the (re-) learning of the tailoring language

Layered Tailoring Languages
In case applications contain tailoring languages of
different levels of complexity, one can distinguish two
cases. First, tailoring languages of different complexity
cover different functions (e.g.: choosing between
different printers vs. programming a macro to format
documents in a word processor). Second, the different
languages allow to tailor the same function on different
levels of complexity (e.g.: choosing between different
button bars vs. building new button bars). In the
following we will focus on the latter.2 We speak about a
layered structure of the tailoring languages in case:

- different languages allow to modify the same function
on various levels of complexity,

- languages of higher complexity create tailored artifacts,
which modify or extend the less complex tailoring
languages.

With layered tailoring languages users design aspects of
their tailoring languages themselves. This fact has
implications for collaborative tailoring. In case an
applications offers only one tailoring language for each
tailorable function, users have to learn this language. If
local experts support other users, they handle the
tailoring language and carry out the tailoring activity
fully. In case of layered tailoring languages the situation
is different because local experts can use tailoring
languages of higher complexity to create tailored artifacts
which can be used by other users to carry out less
complex tailoring activities. Thus, users without
programming skills may be enabled to carry out more
sophisticated tailoring activities by dividing the labor in
more flexible ways with local experts.

Let see the example of tailoring button bars. In case of a
single tailoring language the user would either be able to
chose between a given set of button bars defined by the
programmers or they were equipped with a tailoring
function which allowed to build each time new bars.

1 Note that there are different ways to present the same

tailoring language.
2 It offers a wider range of technical flexibility. Moreover,

it is the more general case because it is possible to
realize the first case by restricting the access of users to
certain language layers.

While the first case does not offer enough flexibility the
second case requires that all users master the bar-
building function. In case of a layered design of the
tailoring environment local experts could build new
button bars while end users could just chose between
these predefined alternatives.

On an individual level the layered structure stimulates
incremental learning of the different languages. (cf.
MacLean et al. 1990). To enable cooperative tailoring in
the way described before, users without programming
skills need to be able to understand the language
constructs provided by the local experts (e.g. the button
bars built by the local experts). In the following we will
briefly present a layered tailoring environment based on a
hierarchical component architecture.

A Layered Tailoring Environments based on
Components
There are a couple of applications, which contain layered
tailoring languages (cf. MacLean et al. 1990, Bentley and
Wasserschaff 1996; Fuchs 1998). Nevertheless these
approaches leave quite a gulf of complexity between the
choice among alternatives and the modification of source
code. To bridge this gulf, Stiemerling and Cremers (1998)
have implemented a component-based approach to
tailorability. Contrary to the traditional application of
components in software engineering (e.g. Banavar et al.
1998), they allow for some runtime composition of the
components.

Looking at the gulf between alternatives to be chosen
from (in this case: of alternative compositions of a
function) and modifying source code (in this case Java
code), such a component based environment offers quite
some additional levels of tailoring complexity. As the
environment allows for multiple levels of compound
components (hierarchical component architecture), wiring
operations to connect components of different levels of
abstraction are given (cf. Stiemerling and Cremers 1998).
On a lower level of tailoring complexity, the users might
just have to connect some compound components, which
are meaningful for their tailoring task.3 On the higher level
of tailoring complexity a bigger set of components is
available. Some of them may not be meaningful to users
because they might just provide alternative technological
infrastructures to realize the same function.

The layered structure of component-based languages
may encourage cooperative tailoring activities. As the
behavior of less complex tailoring functions depends on
the activities of other local experts, we have to support
end users in understanding how these activities influence
the system behavior. Therefore, we will look which
additional features have proven to support learning.

Learning of Tailoring Environments
Looking at features which support learning of tailoring
languages we can draw on experiences concerning
ordinary functions in single user applications. Tailoring

3 Nardi’s (1993) demand for few task-oriented language

constructs could be satisfied on this level.

environments for users without programming skills
should be designed consistently with the ordinary
functionality (cf. MacLean et al. 1990, Oberquelle 1994).
Component-based tailoring languages allow to connect a
set of components with a set of wiring operations. Thus,
the tailoring environment consists out of functions,
which select and wire components.

Features which encourage learning of single user
applications allow structuring, describing, experimenting
with and exemplifying the usage of the functionality (e.g.
Carroll and Carrithers 1984, Carroll 1987, Yang 1990,
Howes and Payne 1990, Paul 1994). These features are
provided by programmers for users. In the case of layered
tailoring languages the learning situation is different. End
users have to learn additionally about the tailored artifact
provided by the local experts. In the following, we will
discuss the relevance of the existing features in
promoting learning of layered tailoring environments in
groupware.

Structuring: Wulf (1999) reports that finding the
appropriate function is a major barrier to tailor an
application. Survey functions presents all functions
according to certain classification schemes. Users get
aware of the whole functionality and are supported to
find a specific function (cf. Paul 1994). A rather different
approach to structure functionality is proposed by Carroll
and Carrithers (1984). In training wheels interfaces they
distinguish between basic and complex functions.
Complex functions are made temporarily inaccessible to
avoid frustrating mistakes and to encourage learning of
the basic functions. While in both of these cases
designers structure the system for users with layered
languages, users have to structure tailored artifacts, as
well.

Describing: Mackay (1990) found that the lack of
documentation of respective functions is a barrier to
tailoring. Manuals and help texts are typical means to
describe the functionality of applications. A description
provided by the vendor informs users about the state
transition to which the execution of a function leads.
Nevertheless, with layered languages users will have to
document their activities, as well. Therefore, Mørch
(1997) has suggested that users can modify the design
rationales of tailorable functions.

Experimenting: Mackay (1990) and Oppermann and Simm
(1994) found that experimentation plays a major role in
learning tailoring functions. Nevertheless, Mackay (1990)
reports that the fear to break something is a barrier to
tailors. Oppermann and Simm (1994) found that the
effects resulting from experimenting with tailoring
functions are difficult to perceive. “Undo function”,
“freezing points”, “experimental data”, and “neutral
mode” are features which support users in carrying out
experiments with a system’s function. Undo functions
allow to reset the execution of (multiple) function while
freezing points allow to define certain system states in
advance to which users can return to after having tried
out other functions. Experimental data are especially
created to explore certain functions. A neutral mode

replaces the execution of a function by a textual
desciption of the effects of this execution. (cf. Yang 1990,
Paul 1994). All these features support users in trying out
which state transition follows from the execution of a
certain function. Still, carrying out experiments can be
problematic with multi-user systems like groupware
because the state transitions are hard to perceive.
Besides, tailored artifacts of higher complexity-levels (e.g.
elementary component) might be difficult to test by
themselves.

Exemplifying: Examples provided by other users are
an important trigger to tailor (Wulf 1999). An animation-
machine presents a recorded sequence of interaction
(Howes and Payne 1990). Such animation gives an
example on how users can apply certain functions.
Nonetheless, with layered languages users will have to
give examples clarifying the meaning of their self-built
artifacts, as well.

POLITeam: The Context of the Study
The POLITeam project is a software development project
in which the application partners required technical
support for distributed cooperation. The main function of
the POLITeam system is to supplement paper work
processes with electronic work processes in one German
federal ministry and in different bodies of a Northern
German state government. To accomplish this, POLITeam
offers a shared workspace, electronic circulation folders
and E-mail functionality. An already existing groupware
system (LinkWorks by DEC) was chosen as a base for
development according to specific user and situation
requirements (cf. Prinz et al., 1998).

An evolutionary, cooperative approach was used in the
design, allowing modifications to be made over time
which designers and users reported as beneficial. Within
this design process user advocates played a special role.
These project members visited the sites regularly,
provided support to the users and therefore were able to
attain user requirements right away (cf. Mambrey, Mark
and Pankoke 1996).

The project started in May 1994 and ended in December
1998, since January, 1995 the system has been installed.
While the search tool has been a design issue since the
very beginning of the project, the component-based
version was developed in the last year of the project.

The study portrayed here was mainly carried out with
users of the Representative Body of the state
government (SR), located in Bonn. About 30 people work
in the Representative Body. They represent the interests
of their state especially in the federal legislation process.
The body is headed by an undersecretary. The
organizational structure of the body mainly consists of
sections, which represent state ministries. Most of the
sections are one-man-departments with the section
manager being the only member. Before the introduction
of POLITeam, three typists, who were a central resource,
supported these sections. Additionally, there are several
administrative sections (cf. Pipek and Wulf 1999).

A Tailorable Search-Tool for Groupware
In the following we will describe the design of component
based tailoring environment which implements a search
tool for groupware. The search tool basically allows users
to specify an inquiry for certain documents stored in the
LinkWorks database, start the search engine after the
inquiry is specified, display the retrieved documents in
different ways and carry out certain operations on the
displayed documents (e.g. copy the document).

The design of the search tool and its decomposition into
components is based on an empirical investigation on
search habits in four different organizations and an
evaluation of a first prototype (cf. Kahler 1996). To
satisfy different and partly contradictive requirements the
search tool is decomposed into six types of elementary
components (cf. Figure 1). 4 Four of these component-
types are visible at the user interface during normal use,
while two of them are invisible during normal use but
visible while tailoring (search engine and switches).

Eight different specification components allow building
an inquiry mask containing just those search attributes
the user typically needs. The start button is a component
whose activation finishes the specification of the inquiry
and activates the search engine. The search engine
connects the search-tool with the LinkWorks database
via the application-programming interface. It transfers the
inquiry of the users to the database and receives a list of
retrieved documents. Two different result-switches allow
to sub-divide the retrieved documents and transfer them
to distinct display windows. The implemented switches
allow sub-division of the output of the search engine
according to the document’s location or to the
document’s name. Two different windows allow to
display the retrieved documents either in a normal
window presenting the documents’ name and further
attributes, or in a window which counts the amount of
documents retrieved and just presents their number.
Three control buttons implement different modes in
dealing with documents displayed in the normal window.
Either a link or a copy can be created on the users’
desktop or the document can be accessed directly.

In order to compose these components the tailoring
language contains wiring operations, which allow
connecting two different types of ports: input and output
ports. Empty circles indicate input ports, full circles
output ports. To support users in wiring the components
appropriately, input and output ports, which can be
connected, are presented in the same color. Components,
which are wired together, are displayed by a connecting
line.

Figure 2 shows an example of a search tool in tailoring
mode. On the upper left side three different specification
components allow the user to define the inquiry (class,
name and owner of the document). Lines connect the
output ports of the specification components (full blue

4 Won (1998) and Engelskirchen (1999) give a more

detailed description of the tailoring language.

circles) with the input port of the search engine (empty
blue circle). The search button’s output port (full red
circle) is connected to a second input port of search
engine (empty red circle). The search engine is only

visible in tailoring more. It indicates the inquiry in an
SQL-like manner. The output of the search engine is
connected (via the compound components input and
output ports) to the input port of the result switch (all are
green circles). Within the switch the search results are
subdivided according to the first letter of the document's
name. The documents starting with the letters "a" to "m"
are transferred via the left output port of the result
switch, while those starting with "n" to "z" are
transferred via the right output port of the result switch
(both ports are indicated as full green circles). Both
output ports are connected to input ports of a display
window (empty green circles).

Applying the concept of compound components,
tailoring languages of a considerably lower complexity
can be created. The search tool presented in figure 2
consists of two compound components (indicated by the
white frames). One compound component allows to
search (composition of specification components, the
search engine and the start button), the other one
displays the retrieved documents (composition of a result
switch and the two windows). To build the search tool
presented in figure 2, users just need to select from the
given set of compound components and wire search and
display components by means of a single operation
(connecting the input and output ports).

On the lowest level of tailoring complexity users can
simply choose between alternative search tools. A search
tool is a specific compound component, built either from

Figure 1: Types of elementary components of the
search tool application

elementary components or compound components.

When the search tool is in use, only visible components
are displayed at the user interface. Other components,
ports, and the wiring statements (connecting lines) are
hidden. A pull down menu contains alternative search
tools and a menu item, which allows entering into the
component based tailoring environment. If the users
decide that the given search tool alternatives do not
satisfy their requirements, they can simply activate the
tailoring environment. In the tailoring mode all
components, ports, and the wiring statements (colored
lines) of the active search tool are displayed and a
second toolbox window appears. This window mainly
contains two menus: one pull down menu, which lists all
the elementary components and another menu, which
lists the compound components. Both lists are
represented in alphabetical order according to their
names.

To ease the exchange of tailored artifacts among users,
we implemented a basic sharing. Whenever a user stores
a newly created search tool alternative or a newly created
compound component, these artifacts become directly
visible in the respective pull-down menus of the other
users. Such a design encourages sharing of tailored
artifacts in smaller groups.

Evaluation and Extension of the
Tailoring Environment
Up till now we have designed layered component
languages and a tailoring environment which allows
sharing of tailored artifacts. The search tool’s tailoring
language offers the following layers: elementary
components, compound components, and search tools.
While all search tools allow choosing among alternatives,
the elementary (low-level) components define the most
complex tailoring language. The possibility to define
compound components is a means to create intermediate
language layers. In our case programmers from outside
the organization provide the elementary components. By
contrary, users and local support staff can tailor the
compound components and the search tools. The design
of the tailoring environment has to support building and
sharing these artifacts.

Evaluating the tailoring environment, the following
questions were of especial interest:

• to which extend would users without programming
skills be able to tailor the search tool, and

• which division of labor would emerge between the
end users and the local experts,

• would end users be able to understand the
components, compound components and search tool
alternatives provided to them by programmers and
local experts,

• how to support the exchange of tailored artifacts
between end users and local experts.

Rather than distributing the search tool to a huge
population of users from different organizations, we
decided to study a small group in depth. To encourage
cooperative tailoring, we involved users with different
skills and a local expert.

Research Approach
To evaluate the design of the component-based search
tool and its tailoring environment, we carried out a
workshop and a field test with users from the SR. The
workshop was held at the research lab of the University
of Bonn. Eleven participants joined that workshop. Four
of them were employees of the SR - a section manager, an
administrative clerk, a secretary and a clerk who provides
local support to the other users. These users were
selected because searching documents was an important
part of their work. None of them had programming skills.

Also, three user advocates supporting different
application partners participated in the workshop. The
other participants were members of the POLITeam project
involved in the design of the search tool.

After a computer-based presentation of the search tool
and its tailoring environment, the four users were asked
to apply the tailoring environment to build new search-
tools by themselves. Afterwards, issues related to the
design of the search tool and the tailoring environment
were discussed. The discussion was documented by the
project members and transcribed on the day of the
workshop.

Based on the results of this workshop the component

Figure 3: Designing the search tool environment

Original Searchtool
Environment

Original Searchtool
Environment plus:
 - naming
 - menu-structure
 - help-texts
 - annotations

Original Searchtool
Environment plus:
 - naming
 - menu-structure
 - help-texts
 - annotations
 - exploration mode
 - exemplifying

Workshop with
Component-Based

Searchtool
Field Test
(14 days)

Semi-Structured
Interviews

Workshops with
VB-Prototypes

language of the search tool and the tailoring environment
were extended. In the following we carried out a field
study in the SR. Two of the participants of the first
workshop had changed their jobs. The remaining ones
(the secretary and the clerk who provided system
support) and a newly employed clerk from the public
relation department of the SR joined the field test. Other
users of the SR were asked to provide search permission
on their documents eventually needed by the participants
of the field test.
We introduced the new search tool environment in a
workshop in which three users, one user advocate and
three designers participated. The extended tailoring
environment was presented and the users were asked to
carry out some tasks with it. During the workshop we
took written notes and transcribed them directly
afterwards.

In the next two weeks, the users were supported
continuously by a user advocate. Also, project members
visited each user at least twice for a 60 – 120 minutes time
span. During these prearranged visits project members
encouraged tailoring activities related to the users’
search tasks. The tailoring process and the emerging
problems were observed, written notes were taken during
the observation and transcribed directly after the visit.

At the end of the observation period, a third version of
the tailoring environment was introduced. A few days
after installing this new version, we carried out semi-
structured interviews with the users. The interviews
covered the following issues related to the tailoring
environment: patterns of cooperative tailoring, usage of
textual documentation (manuals, help functions,
annotations), occasions and means to experiment with
applications, and further design requirements. The
interviews lasted about 60 minutes and were carried out
at the users’ workplaces. Written notes were taken during
the interviews, a transcription was carried out
immediately afterwards.

Shortly after the interviews in December 1998, we copied
all the tailored artifacts for analysis. Figure 3 gives a
survey on the design process carried out to improve the
usability of the tailoring environment. The following
observations are based on an analysis of the different
data gained during this process.

Shared Tailored Artifacts and the Division of Labor
In the initial workshop the users already started to
discuss how to carry out the tailoring tasks
cooperatively. having tried out the tailoring environment,
only two of the four users said that they would use it to
build their own search tools. The others felt that the
graphical interface for connecting components was too
complicated to handle without sufficient support.
Moreover, these users argued that assembling new
search tools would be too time consuming. When
searching for documents they feel typically under time
pressure which does not allow for tailoring. By contrary
the user providing local support was very enthusiastic
about the tailoring environment.

During the workshop the users discussed already how
the tailoring work could be divided among them. Pointing
to her colleague who provides local support, the
administrative clerk suggested the following division of
labor:

„The alternatives are good for us. The assembly-mode
is for you.“

Assuming such a division of labor, the colleague
providing system support advocated a tool to distribute
newly assembled search tools among the other users. He
argued that his job would become much easier with such
a tool.

During the field test the implemented sharing mode was
therefore well perceived by the users during the field test.
The two none-expert users appreciated to be provided
with high quality tailored artifacts. The local expert,
however, stated in his final interview that he felt a bit
uneasy if any tailored artifacts would become publicly
available, and thus, other users could see when and what
he tailored. He asked for private stores where he could
keep his experimental artifacts.

Structuring Components and Tailored Artifacts
To structure the tailoring language(s), the naming and
classifying of components and tailored artifacts becomes
a central issue. When tailoring during the initial
workshop, users had problems to select the elementary
components appropriately. These elementary
components were labeled by rather design- oriented
names. Therefore, the users found it difficult to select the
appropriate components from the linear list.

We tackled the problems in three different ways. First, we
tried to find more meaningful names for the individual
components in cooperation with the users. Second, we
added icons to the presentation of the components in the
list. These icons resembled the visual presentation of the
components at the interface. Third, we classified the
components into four different types and used this
classification scheme as an additional hierarchy in the
toolbox menu.5

During the field test we found that these features
improved the ability of the users to select elementary
components. Still, when the components were invisible
during the search tool’s usage or their functionality was
rather complex, it turned out to be difficult to
communicate their meaning by a name or an icon (e.g.: it
was difficult to find appropriate names and icons for
switches). Besides, the components’ classification
scheme which we used in order to establish an additional
hierarchy-level in the menu was not understood by the all
users. So they suggested abandoning the additional level
in the hierarchy of the menu and applying it just as a
means to structure the linear list. Given a list of all in all 17
elementary components this was a viable solution.

5 We simplified the classifcation scheme given in figure 1

by subsuming the search engine and the result
switches under one item. The start button was put
under the same item as the control buttons.

Nevertheless, if a component based tailoring language
consists of considerably more elementary components,
the former approach needs to be pursued, and that may
lead to the mentioned problems. A practical approach to
solve this problem would be a tailorable menu structure.
Yet, if each user could modify the structure individually,
this may lead to problems in cooperation.

The naming of tailored artifacts became a problem in the
field test, as well. For instance, the clerk from the public
relations department used the following convention to
name search tools she had modified: <old name>
(<abbreviation of added components>). This convention
was not well understood by the other users. To
encourage cooperative use of tailored artifacts common
naming conventions are important. The classification of
tailored artifacts may lead to further problems. Right now
there are just two linear lists for the compound
components and the search tool alternatives. These lists
are in alphabetical order according to their names.
Nevertheless, with an increasing number of these
artifacts individually or collecively tailorable
classification schemes seem to be indispensible.

While the classification schemes mentioned so far
structure the presentation of the sets of components from
the different layers, the users also asked for a context
dependent presentation of the subsets of the
components. As soon as they touched one of the input
ports of a component they wanted to get a context -
dependent presentation of the tool-box. This
presentation should just list those (compound)
components which could be connected to the selected
port. In this case the technological nature of the
components could be used to generate a context
dependent classification scheme automatically.

Describing Components and Tailored Artifacts
The initial workshop and the field test showed that users
are hardly able to deduce the meaning of all components
just from their names and the way they are classified.
Hence, we generated possibilities to describe the
functionality textually. Features which allow to describe
components and tailored artifacts, have to take the
different actors into account who produce these
documentations.

As programmers created the elementary components and
the tailoring environment, we developed a hypertext -
based help menu for the search tool window and the
toolbox window. The help texts of the tool-box covered
all the elementary components by a brief explanation of
up to six sentences depending on their complexity.
Screen shots were added where necessary.

During the field study it turned out that the local expert
was the only one who used the help-menu at least
sporadically. All users indicated difficulties in finding the
access point to activate the help-texts and the location of
the desired explanation in the hypertext presentation.

Contrary to elementary components, users generated
compound components and full search tools themselves.
Thus, the description of these artifacts has to be carried

out by them. As the textual documentation of design
rationales imposes extra burden and is therefore often
omitted (cf. Grudin, 1996), we tried to provide as much
technical support as possible. We have implemented an
annotation window, which consist of five different text
fields: ”name”, “creator,” “origin”, “description”, and
“remarks” (cf. figure 4). The “name” field is automatically
marked whenever a tailored artifact is created. In the
“creator“ field the user who builds a tailored artifact can
input his name. In the “origin” field, a reference is
generated automatically in case a tailored artifact has
been created by modifying an existing one. In the
“description” field the creator should clarify the
functioning of the component. In case a compound
component is derived from an existing one the original
description is copied automatically and put in Italics. The
“remark” field can contain further comments. Contrary to
the help texts, the annotations were accessible directly
from the display of the respective tailored artifact.

In the field test annotations were used more frequently
than the help-texts. This result is probably caused by an
easier access mode and the richer information structure.
The users liked the information structure of the
annotation window. The documentation of the creator’s
name was important to them for four reasons. First,
knowing about the creator’s typical search tasks helps
them to understand the functioning of the tailored
artifact. Second, the creator’s name is an important
information for judging the quality of a tailored artifact.
Third, it allows contacting the creator for further
information. Fourth, the documentation of his name gives
the creator a chance to let the organization know about
his efforts. The users found the “origin” field helpful as it
recorded parts of the tailoring history, and thus, eased
understanding of the functioning of the artifact. The
“description” and “remark” fields were perceived being
essential to increase understanding and were almost
always filled in during the field test. Nevertheless, the
way they were filled was often regarded problematic.
Especially the usage of abbreviations and uncompleted
sentences caused considerable problems. Thus, here
again user groups carrying out cooperative tailoring
activities need to develop appropriate conventions.

Figure 4: Annotation describing a search tool

Experimenting with Alternative Search Tools
Naming and classification of textual descriptions of
tailored artifacts leads to some problems especially in
interpersonal usage. Conventions and mutual
understanding have to be developed among the different
actors. By contrary, experimenting with tailored artifact
does not require other users input. In case of single user
applications, it just requires to observe the state
transitions resulting from a function’s execution. In the
following, we will investigate how to stimu late
experimenting with tailorable groupware.

When trying to find out how an unknown search tool
works, users typically switched into the tailoring mode
and look at the visualized components and wiring
statements. Nevertheless, often they were not able to
deduce the functioning of complex search tools because
they could not work out the exact meaning of certain
components (e.g. output ports of switches) or the
outcome of their interplay.

Already during the initial workshop users asked for
support in exploring newly assembled artifacts. The user
acting as local system support asked to be able to try out
newly created search tools:

„I need to know whether these things do what they
are supposed to do.“

Nevertheless, the exploration of a tool searching outside
the own desktop can lead to disturbances of other users.
A statement of the secretary made clear that she would
carefully select those users whom to disturb.

„If I want to know whether the search tool works well
on other people’s desks, I will send a document to
Mrs. P – No! Not to her - but to Mr. S. Then I will
search for that document.“

Assuming that tailoring is an ongoing activity, even
tolerant colleagues will probably not accept permanent
interruptions due to other people´s tests.

The problem of exp loring assembled search-tools became
even more complex in the field test when search
permissions had to be explicitly granted. Users who tried
out a new search tool, which unexpectedly did not find
any documents on other users’ desks, had difficulties to
judge whether this outcome was due to a wrong
understanding of the tool or missing search-permissions.

Therefore, we decide to extend the search-tool
environment by an exploration mode. To explore search
tools in groupware, other users’ documents and desktops
have to become visible and accessible. Such an option
cannot be realized with other users’ real data and
desktops, because it would violate their privacy.
Consequently other users’ desktops, populated by
experimental data had to be simulated. Users who want to
explore a search tool can take the role of other users and
access their simulated desktops.

Discussing this concept during the interviews, the user
providing local support found the exploration
environment useful to test whether a search tool really

finds what it was supposed to find. By contrary, the other
clerk was quite reserved towards this concept because to
her it seemed too complex to handle. The efforts to create
experimental data and to handle the different roles
appropriately seemed too high for her compared to the
benefits: checking whether a given search tool is doing
what it is supposed to do.

While observing users’ tailoring habits we found many
occasions when building and experimenting interleaves.
For instance, users modified a given tool to better
understand its functioning and that of some of its parts,
or they carried out minor modifications in an existing tool
and experimented with that. Therefore, we believe that
building tailored artifacts and experimenting with them
should be both supported in the exploration mode.

We extended the exploration mode in a way that it
became possible to experiment not only with the tailored
artifacts but also with the tailoring functions. To build an
explorable tailoring environment, we applied the concepts
neutral mode, freezing points and experimental data.6
Whenever a user decides to switch to the exploration
mode of the tailoring environment, a new window pops-
up. It has a specific color of the frame and contains those
windows of the tailoring environment which were active
before starting the tailoring mode (search tool and tool
box). These windows behave regularly with except for
those functions, which allow to modify the state of the
original search tool environment (e.g. store search tool,
rename search tool). These functions are put into neutral
mode. So the state transition following their execution is
not carried out but described textually. The exploration
mode comes up with a copy of the search tool, which was
active before. Playing the role of experimental data for the
tailoring environment, this tool can be modified by means
of the tailoring functions. If users decide to leave the
exploration mode, they are asked whether they want to
store or abandon the outcome of their explorative
activities. In any case, the users return to the tailoring
environment containing the search tool, which was active
before he started the exploration mode. This search tool
was “freezed” during exploration.

Figure 5 shows a screen shot of the exploration mode.
The big window in the middle allows populating the
simulated desktops with experimental data. To ease the
users’ understanding of the exploration mode, the menu
is designed in a similar way as the main menu of
LinkWorks. Only those functions can be activated that

6 As tailoring in a component-based search environment

consists of a long list of various activities, the users
regarded a multi-step undo/redo feature as being to
complex.

Figure 5: Search tool in exploration mode

allow creating or modifying data. Moreover, there are
further buttons, which allow to populate the simulated
desktops more efficiently (e.g. creation of a set of
documents by accident). The other two windows (search
tool window at the bottom and tool box window in the
top right corner) show the tailoring environment in
exploration mode. The windows look exactly like the
original ones with the exception of the background color.
The search tool presented in the search tool window
operates on the experimental data visible in the middle
window. The button in the top left of the screen allows to
leave the exploration mode.

Exemplifying Components’ Use
While our tailoring environment supports experiments
with given search tools, the question how to support the
exploration of compound components or elementary
components remains. These artifacts cannot be executed
in the search tool environment by themselves. To
support users in tailoring we have implemented an option
which allows to store a full search tool together with
these artifacts. Such a full search tool is supposed to give
a characteristic example of how to use the respective
elementary or compound component. In this context it
can be seen as an executable annotation. As the
elementary components were provided by the project
team, we have added such an example of a full search tool
to teach elementary component. For the compound
components we allowed users to “annotate” these
tailored artifacts by their own search tool examples.

Activating such an example, the exploration mode comes
up. Users can test the search-tool example and deduce
the functioning of the tailored artifact from the outcome
of these experiments. Besides they can find out about the
particularities of the component by replacing it with
another one of the same type.

The users found it helpful to see immediately how certain
components need to be wired and how to structure the
search tool around. One user found a search tool example
relevant for his current work and stored it even in the list
of alternatives. Due to the fact that this feature was
introduced in the end of the field test, we did not really

find out whether users would take the extra burden to
annotate their compound components by these examples.

Conclusion

Layered tailoring languages are central in promoting
individual learning and collective tailoring activities.
Contrary to classical tailoring languages, layered
languages allow users to design higher-level language
constructs by themselves. For two reasons layered
tailoring languages are an interesting case for research in
CSCW. First, they provide a means to make groupware
tailorable to users without programming skills. Second,
they are an interesting area to study cooperative tailoring
activities.

Hierarchically structured components are a promising
approach to implement layered tailoring languages. We
applied this technique to develop the component
language of a tailorable search tool in gropuware. A field
test evaluated the tailorable search tool in real work
setting. Our experience indicates that an appropriate
language design by itself is not sufficient to secure the
usability of the tailoring environment. Based on concepts
known to encourage learning in single user applications,
we developed features which allow structuring,
describing, experimenting with, and exemplifying the
usage of components and tailored artifacts. These
features had to take the fact into account that with
layered tailoring languages users themselves create and
exchange tailored artifacts.

Supporting cooperative tailoring activities by sharing the
tailored artifact turned out to be a useful concept.
However, the sharing mode which was implemented in
the case study is only adequate for small groups of users.
In larger groups the rising number of compound
components and alternative search-tools increases the
complexity to choose the appropriate element from the
list. In these cases the sharing of artifacts has to become
more selective and the establishment of sub-groups of
cooperating users has to be supported. Besides sharing,
sending of tailored artifacts should be supported in such
an environment, as well (cf. MacLean et al. 1990).

Tailored artifacts in layered languages (in this case:
compound components and full search tools) have a dual
nature. On the one hand they can be seen as shared
objects whose meaning has to be articulated between the
communities of the producers and the consumers. On the
other hand they are part of the formal specification of the
application’s code. Looking at the means to support
articulation between producers and consumers,
structuring and describing can be applied to any set of
other shared objects. The problems, which we found in
the field study, are well known in handling many kinds of
shared artifacts. For instance, Mark et al. (1997) and Wulf
(1997) report that the naming, classifying and describing
was a major problem when working in a shared workspace
with documents.

Due to the dual nature of tailored artifacts these problems
can be tackled by an experimental execution of the source

code. This provides an additional means to encourage
understanding between the producers’ and consumers’
communities. Yet, experimenting with groupware causes
problems, which do not exist, with single user
applications. Due to the fact that the effects of a function
execution are hard to perceive on the activators
workspace new concepts have to be developed. The
exploration mode developed in this study gives an
example of what is needed.

This research has been carried out on component based
tailoring languages for users without programming skills.
Nevertheless, the design approach and the features,
which support the articulation between producers and
consumers, are relevant for component-based
applications’ development, as well (e.g. Banavar et al.
1998). While the level of complexity of the components
and their wiring operations are much higher in that case,
there is also the problem that consumers need to
understand an artifact created by the producer.

REFERENCES
Banavar, G.; Doddapaneni, S.; Miller, K.; Mukherje, B.:

Rapidly Building Synchronous Collaborative
Applications By Direct Manipulation, in: Proceedings
of CSCW ’98, ACM-Press, New York, 1998, pp. 139 -
148

Bentley, R. and Dourish, P.: Medium versus Mechanism.
Supporting Collaboration Through Customisation, in:
Marmolin, H.; Sundblad, Y.; Schmidt, K. (Hrsg.),
Proceedings of the Fourth European Conference on
Computer Supported Cooperative Work - ECSCW '95,
Kluwer, pp. 133-148

Bentley, R.; Wasserschaff, M.: Supporting Cooperation
through Customization: The T-Views Approach, in:
Proceedings of COOP’96, June 12 – 14, 1996, Juan-les-
Pins (Fr.), pp. 241 - 259

Caroll,J. M.: Five Gambits for the advisory Interfacs
Dilemma, in: Frese, M.; Ulich, E.; Dzida, W. (eds):
Psychological Issues of Human Computer Interaction
in the Work Place, Amsterdam 19987, pp. 257 – 274

Carroll, J. M.; Carrithers, C.: Training Wheels in a User
Interface, in: Communications of the ACM, Vol. 27, No.
8, 1984, pp. 800 - 806

Dourish, P.: Open Implementation and Flexibility in
CSCW Toolkids, PhD Thesis, University College
London 1996

Engelskirchen, T.: Exploration anpaßbarer Groupware,
M.Sc. Thesis, Department of Computer Science III,
University of Bonn 1999 (in preparation)

Fuchs, L.: Situationsorientierte Unterstützung von
Gruppenwahrnehmung in CSCW-Systemen, PhD-
Thesis, Department of Computer Science, University of
Essen, 1997

Grudin, J.: Evaluating Opportunities for Design Capture,
in: Moran, J. P.; Caroll, J. M. (eds.): Design Rationale:
Concepts, Techniques and Use, LEA, Hillsdale 1996

Gantt, M.; Nardi, B. A.: Gardeners and gurus: Patterns of
Cooperation among CAD users, in: Proceedings of CHI
'91, May 3-7, 1991, Monterey, CA, pp. 107 - 117

Henderson, A.; Kyng M. (1991): There's No Place Like

Home. Continuing Design in Use. in: Design at Work,
Lawrence Erlbaum Associates, Publishers, pp. 219-240

Howes, A.; Paynes, S. J.: Supporting exploratory learning,
in: Proceedings of INTERACT’90, North-Holland,
Amsterdam, S. 881 - 885

Kahler, H.: Developing Groupware with Evolution and
Participation: A Case Study, in: Proceedings of the
Forth Biennial Conference on Participatory Design
(PDC´96), Boston, MA, Nov. 13 - 15, 1996, pp. 173 – 182

Kahler, H.; Mørch, A.; Stiemerling, O.; Wulf, V.:
Tailorable Systems and Cooperative Work, Special
Issue of Computer Supported Cooperative Work: The
Journal of Collaborative Computing, 1999a (in press)

Mackay, Wendy E.: Users and customizable Software: A
Co-Adaptive Phenomenon, PhD-Theses, MIT, Boston
(MA) 1990

MacLean, A.; Carter, K.; Lövstrand, L.; Moran, T: User-
tailorable Systems: Pressing the Issue with Buttons, in:
Proceedings of the Conference on Computer Human
Interaction (CHI '90), April 1-5, 1990, Seattle,
Washington, ACM-Press, New York 1990, pp. 175 –182

Malone, Th. W.; Fry, Ch.; Lai, K.-Y.: Experiments with
Oval: A Radically Tailorable Tool for Cooperative
Work. in: Procceedings of CSCW '92, ACM-Press, New
York, 1992, pp. 289-297

Mambrey, P., Mark, G., Pankoke-Babatz, U.: Integrating
user advocacy into participatory design: The
designer’s perspective, in: Proceedings of the
Participatory Design Conference 1996, Cambridge, MA,
November 1996, pp. 251-260

Mark, G.; Fuchs, L.; Sohlenkamp, L.: Supporting
Groupware Conventions through Contextual
awareness, in: : Hughes, J. A.; Prinz, W.; Rodden, T.;
Schmidt, K. (Hrsg.), Proceedings of the Fifth European
Conference on Computer Supported Cooperative Work
- ECSCW '97, Kluwer, Dordrecht 1997, pp. 253-268

Mørch, A.: Method and Tools for Tailoring of Object-
oriented Applicatios: An Evolving Artifacts Approach,
PhD-Thesis, University of Oslo, Department of
Computer Science, Research Report 241, Oslo 1997

Nardi, B. A.; Miller, J.: Twinkling lights and nested loops:
Distributed problem solving ans spreadsheet
development, in: International Journal of Man Machine
Studies, vol 34., pp. 161 – 184

Nardi, B. A. 1993: A Small Matter of Programming -
Perspectives on end user computing, MIT-Press,
Cambridge et al.

Oberquelle, H. (1994): Situationsbedingte und
benutzerorientierte Anpaßbarkeit von Groupware. in:
Hartmann, A. et al. (eds), Menschengerechte
Groupware , Stuttgart, pp. 31-50

Oppermann, R.; Simm, H.: Adaptability: User-Initiated
Individualization, In: Oppermann, R. (ed.): Adaptive
User Support – Ergonomic Design of Manually and
Automatically Adaptable Software. Hillsdale, New
Jersey 1994: Lawrence Erlbaum Ass.

Pipek, V.; Wulf, V.: A Groupware’s Live, in Proceedings
of ECSCW’99, Kluwer, Dordrecht 1999

Prinz, W.; Mark, G.; Pankoke, U.: Designing groupware
for Congruency in Use, in: Proceedings of CSCW’98,

ACM-Press, New York, 1998, pp. 373 - 382
Paul, H.: Exploratives Agieren, Peter Lang, Frankfurt/M

1994
Stiemerling, O.; Cremers, A. B.: Tailorable Component

Architectures for CSCW-Systems, in: Proceedings of
the 6th Euromicro Workshop on Parallel and
Distributed Programming, Jan 21-24, 1998, Madrid,
Spain, IEEE Press, pp. 302-308

Syri, A.: Tailoring Cooperation through Mediators, in:
Hughes, J. A.; Prinz, W.; Rodden, T.; Schmidt, K.
(Hrsg.), Proceedings of the Fifth European Conference
on Computer Supported Cooperative Work - ECSCW
'97, Kluwer, Dordrecht 1997, pp. 157 - 172

Trigg, R. and Bødker, S. 1994: From Implementation to
Design: Tailoring and the Emergence of
Systematization in CSCW, in: Proceedings of

CSCW´94, ACM-Press, New York, pp. 45 – 55
Won, M.: Komponentenbasierte Anpaßbarkeit von

Groupware, M.Sc. Thesis, Department of Computer
Science III, University of Bonn 1998

Wulf, V.: Storing and Retrieving Documents in a Shared
Workspace: Experiences from the Political
Administration. In: Howard, S.; Hammond, J.;
Lindgaard, G. (eds): Human Computer Interaction:
INTERACT 97, Chapman & Hall, S. 469-476, 1997

Wulf, V.: Direct Activation: A Concept to Encourage
Tailoring Activities, submitted to UIST '99, ACM-
Press, New York 1999

Yang, Y.: Current Approaches & new Guidelines for
Undo-Support Design, in: Proceedings of
INTERACT’90, North-Holland, Amsterdam, S. 543 - 548

